- HOSTING
- Spain
Hosting Information
- Offer Deadline
- EU Research Framework Programme
- H2020 / Marie Skłodowska-Curie Actions
- Country
- Spain
- City
- Granada
Organisation/Institute
- Organisation / Company
- International Research Projects Office
- Department
- Promotion and Advisory Unit
- Laboratory
- NA
- Is the Hosting related to staff position within a Research Infrastructure?
- No
Contact Information
- Organisation / Company Type
- Other
- Website
- grus@ugr.es
- State/Province
- Granada
- Postal Code
- 18071
- Street
- Gran Vía de Colón, 48, 2nd floor
Description
Professor Guillermo Rus, from the Department of Structural Mechanics at the University of Granada, welcomes postdoctoral candidates interested in applying for a Marie Skłodowska-Curie Individual Fellowships (MSCA-IF) in 2020 at this University. Please note that applicants must comply with the Mobility Rule (more information: http://sl.ugr.es/0aNV).
Brief description of the institution:
The University of Granada (UGR), founded in 1531, is one of the largest and most important universities in Spain. The UGR has been awarded with the "Human Resources Excellence in Research (HRS4R)", which reflects the UGR’s commitment to continuously improve its human resource policies in line with the European Charter for Researchers and the Code of Conduct for the Recruitment of Researchers. The UGR is also a leading institution in research, located in the top 5/10 of Spanish universities by a variety of ranking criteria, such as national R&D projects, fellowships awarded, publications, or international funding.
UGR is one of the few Spanish Universities listed in the Shanghai Top 500 ranking (http://sl.ugr.es/0aw0). The Academic Ranking of World Universities (ARWU) places the UGR in 268th position in the world and as the 4th highest ranked University in Spain, reaffirming its position as an institution at the forefront of national and international research. From the perspective of specialist areas in the ARWU rankings, the UGR is outstanding in Documentation (ranked in the 36th in the world) or Food science technology (ranked 37th in the world), Mathematics and Computer Science (ranked among the top 76-100 in the world).
The UGR has 4 researchers at the top of the Highly Cited Researchers (HCR) list in the Computer Science area. With regard to broader subject fields, the UGR is ranked in 45th position in the universities worldwide in the discipline of Engineering. It is also well recognized for its web presence (http://sl.ugr.es/0a6i) taking 36th place in the top 200 Universities in Europe. Internationally, we bet decidedly by our participation in the calls of the Framework Programme of the European Union. For the duration of the last two Framework Programmes, the UGR has obtained a total of 66 projects, with total funding of 18.02 million euros, and for H2020, 80 projects with total funding around 20.6 million euros.
Brief description of the Centre/Research Group
The Nondestructive Evaluation Laboratory has served results in ultrasonics for advanced materials health prognosis and medical diagnosis since 2004. We share the aspiration of discovering fascinating phenomena in the intersecting fields of mechanics-physics-computation-materials engineering, understanding the laws behind these, and applying this knowledge to create unique concepts and technology that serve our community by innovating and entrepreneuring.
The structural microarchitecture of soft tissue is recently becoming a cornerstone of biomechanical engineering and is of growing interest for a broad spectrum of clinical specialists. Our new ultrasonic wave concepts are enabling a new class of biomarkers for both imaging and controlling in vivo and noninvasively tissue microarchitecture. The breakthrough of modelling its elastic hierarchical complexity impacts critical aspects including organ-level functionality, inflammatory and healing processes, tumour growth, all the way down to cell-to-cell signalling. We have: a) Conceived and developed torsional ultrasonic waves and sensor technologies capable of generating and sensing them, prototyping robust functional instrumentation. b) Modelled relationships between the biochemical cascade and the mechanical functionality and their interaction with ultrasound, integrating models of tissue remodelling and tumour growth, experimentally validated by ultrasonication of cancer stem cells.
Project description
The World Health Organization estimates that in 2017 circa 15 million babies (1 in 10) will be born preterm, which is the leading cause of infant mortality. The biology of cervical ripening that leads to birth is poorly understood. Furthermore, there is no clinical tool for the quantitative and objective evaluation of the cervical biomechanical state, which in the words of H. Feltovich et al. “…likely contributes to the reason [that] the singleton spontaneous preterm birth rate has not changed appreciably in more than 100 years.” The WHO calls for “Strategic investments in innovation and research are required to accelerate progress.”
Towards this problem, this project will advance the new biomedical engineering technology of torsional ultrasound waves (TW) to sense soft tissue architecture. This technology will enable a new class of biomarkers that quantify the mechanical functionality of the cervix, and indeed any soft tissue. TW are shear elastic waves that propagate through soft tissue radially and in depth in a curled geometry. A mathematical result by Reissner and Sagoci in 1944 renders the torsional wave formulation seed that will be elaborated. This project will develop the generation and detection of torsional waves through the proposed sensor technology. The sensor technology will be based on a novel arrangement of concentric sandwiches of piezo- and electromechanical elements.
The specific objectives span from designing a laboratory-scale proof of concept device able to generate and sense TW in tissue to validating the technology by a pilot test on pregnant patients.
Research Area
LIFE/PHY-MAT
For a correct evaluation of your candidature, please send the documents below to Professor Guillermo Rus (grus@ugr.es):
- CV
- Letter of recommendation (optional)